
[Hans, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1545-1551] 

 

IJESRT   
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 
Web Crawlers and Search Engines 

Ritika Hans*1, Gaurav Garg2 
*1,2 AITM Palwal, India 

Abstract 
In large distributed hypertext system like the World-Wide Web; users find resources by following 

hypertext links. As the size of the system increases the users must traverse increasingly more links to find what they 
are looking for, until precise navigation becomes impractical. The WebCrawler is a tool that solves these problems 
by indexing and automatically navigating the Web. This paper describes the basic definition of web and search 
engine and we have also explored the web crawler with its types.           
 
Introduction  
  WWW on the Web is a service that resides 
on computers that are connected to the Internet and 
allows end users to access data that is stored on the 
computers using standard interface software and we 
can say that it is a driving force behind the internet. 
The World Wide Web is the universe of network-
accessible information, an embodiment of human 
knowledge. 
  The web creates new challenges for 
information retrieval. The amount of information on 
the web is growing rapidly, as well as the number of 
new users inexperienced in the web research. People 
are likely to surf the web using its link graph, often 
starting with high quality human maintained indices 
such as Yahoo! or the search engines like Google. A 
web crawler is a program that downloads and stores 
Web pages, often for a Web search engine by placing 
an initial set of URLs in a queue ,where all URLs to 
be retrieved are kept and prioritized. 
 
Search Engines 
              The Internet, particularly the World Wide 
Web, is a vast source of information that is growing t 
an explosive rate .More than 7 million publicly 
available pages are added to the World Wide Web 
everyday. This growth rate means the 2.1 billion 
unique pages available on the Web will double in the 
span of about one year. Search engines must be fast 
enough to crawl the exploding the exploding volume 
of new Web pages in order to provide the most up-to-
date information. As the number of pages on the Web 
grows, so will the number of results search engines 
return. There are differences in the ways various 
search engines work, but they all perform three basic 
tasks: 
 

� They search the Internet based on 
important words. 

 
� They keep an index of the words they 

find, and where they find them. 
� They allow users to look for words or 

combinations of words found in that 
index. 

In the process of crawling, pages are 
extracted all the words from each page, and records 
the URL where each word occurred. The result is a 
generally very large “lookup table" that can provide 
all the URLs that point to pages where a given word 
occurs. The table is of course limited to the pages that 
were covered in the crawling process. As mentioned 
earlier, text indexing of the Web poses special 
difficulties, due to its size, and its rapid rate of 
change.  

 
In addition to these quantitative challenges, 

the Web calls for some special, less common kinds of 
indexes. Such indexes would not be appropriate for 
traditional text collections that do not contain links. 
During a crawling and indexing run, search engines 
must store the pages they retrieve from the Web. The 
page repository represents the possibly temporary 
collection. Sometimes search engines maintain a 
cache of the pages they have visited beyond the time 
required to build the index. This cache allows them to 



[Hans, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1545-1551] 

 

serve out result pages very quickly, in addition to 
providing basic search facilities. 

 If the user returns to a page fairly soon, it is 
likely that the data will not be retrieved from the 
source web server, as above, again. By default, 
browsers cache all web resources on the local hard 
drive. An HTTP request will be sent by the browser 
that asks for the data only if it has been updated since 
the last download. If it has not, the cached version 
will be reused in the rendering step. This is 
particularly valuable in reducing the amount of web 
traffic on the internet.  

The Some systems, such as the Internet 
Archive, have aimed to maintain a very large number 
of pages for permanent archival purposes. Storage at 
such a scale again requires special consideration. 
The query engine module is responsible for receiving 
and fulfilling search requests from users. The engine 
relies heavily on the indexes, and sometimes on the 
page. 
 
Types Of Search Engine 
1. Crawler Based Search Engines 

Crawler based search engines create their 
listings automatically. Computer programs ‘spiders’ 
build them not by human selection. They are not 
organized by subject categories; a computer 
algorithm ranks all pages. Such kinds of search 
engines are huge and often retrieve a lot of 
information -- for complex searches it allows to 
search within the results of a previous search and 
enables you to refine search results. These types of 
search engines contain full text of the Web pages 
they link to. So one can find pages by matching 
words in the pages one wants. 
2. Human Powered Directories 

These are built by human selection i.e. they 
depend on humans to create listings. They are 
organized into subject categories and subjects do 
classification of pages. Human powered directories 
never contain full text of the Web page they link to. 
They are smaller than most search engines. 
3. Hybrid Search Engine 

A hybrid search engine differs from 
traditional text oriented search engine such as Google 
or a directory-based search engine such as Yahoo in 
which each program operates by comparing a set of 
metadata, the primary corpus being the metadata 
derived from a Web crawler or taxonomic analysis of 
all internet text, and a user search query. In contrast, 
hybrid search engine may use these two bodies of 
metadata in addition to one or more sets of metadata 
that can, for example, include situational metadata 
derived from the client's network that would model 
the context awareness of the client. 

 

Web Crawlers 
A crawler is a program that downloads and 

stores Web pages, often for a Web search engine. 
Roughly, a crawler starts off by placing an initial set 
of URLs, in a queue, where all URLs to be retrieved 
are kept and prioritized. From this queue, the crawler 
removes URL (in some order), downloads the page, 
extracts any URLs in the downloaded page, and adds 
the new URLs in the queue. This process is repeated. 
Collected pages are indexed, cached and stored for 
further processing by Web search engines. Most 
crawlers abide by the Robots Exclusion Principle. 
Robot exclusion principle 

In 1993 and 1994 there have been occasions 
where robots have visited WWW servers where they 
weren't welcome for various reasons. Sometimes 
these reasons were robot specific, e.g. certain robots 
swamped servers with rapid-fire requests, or retrieved 
the same files repeatedly. In other situations robots 
traversed parts of WWW servers that weren't 
suitable, e.g. very deep virtual trees, duplicated 
information, temporary information, or cgi-scripts 
with side-effects (such as voting). These incidents 
indicated the need for established mechanisms for 
WWW servers to indicate to robots which parts of 
their server should not be accessed. This standard 
addresses this need with an operational solution. 
The Method 

The method used to exclude robots from a 
server is to create a file on the server, which specifies 
an access policy for robots. This file must be 
accessible via HTTP on the local URL "/robots.txt".  
This approach was chosen because it can be easily 
implemented on any existing WWW server, and a 
robot can find the access policy with only single 
document retrieval. 
The Format 

 The format and semantics of the 
"/robots.txt" file is as follows: The file consists of one 
or more records separated by one or more blank lines. 
Each record contains lines of the form "<field> :< 
optional space><value><optional space>". The field 
name is case insensitive. Comments can be included 
in file using UNIX Bourne shell conventions: the '#' 
character is used to indicate that preceding space (if 
any) and the remainder of the line up to the line 
termination is discarded. Lines containing only a 
comment are discarded completely and therefore do 
not indicate a record boundary. The record starts with 
one or more User-agent lines, followed by one or 
more Disallow lines, as detailed below. 
UNRECOGNIZED HEADERS ARE IGNORED. 
User-Agent 

 The value of this field is the name of the 
robot the record is describing access policy for. If 



[Hans, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1545-1551] 

 

more than one User-agent field is present the record 
describes an identical access policy for more than one 
robot. At least one field needs to be present per 
record. If the value is '*', the record describes the 
default access policy for any robot that has not 
matched any of the other records. It is not allowed to 
have multiple such records in the "/robots.txt" file. 
The value of this field specifies a partial URL that is 
not to be visited. This can be a full path, or a partial 
path; any URL that starts with this value will not be 
retrieved. For example, Disallow: /help disallows 
both /help.html and /help/index.html, whereas 
Disallow: /help/ would disallow /help/index.html but 
allow /help.html. Any empty value indicates that all 
URLs can be retrieved. At least one Disallow field 
needs to be present in a record. The presence of an 
empty "/robots.txt" file has no explicit associated 
semantics, it will be treated as if it was not present, 
i.e. all robots will consider themselves welcome. 

 
Architecture of Web Crawler 
             In order to download a document, the crawler 
picks up its seed URL, and depending on the host 
protocol, downloads the document from the web 
server. For instance when a user accesses an HTML 
page using its URL, the documents is transferred to 
the requesting machine using Hyper Text Transfer 
Protocol (HTTP) [2, 3, 4] 
             The browser parses the document and makes 
it available to the user. Roughly, a crawler starts off 
by placing an initial set of URLs, in a queue, where 
all URLs to be retrieved are kept and prioritized. 
From this queue, the crawler extracts a URL, 
downloads the page, extracts URLs from the 
downloaded pages, and places the new URLs in the 
queue. This process is repeated and the collected 
pages are later used by other applications, such as a 
Web search engine.   
 

Algorithm for the Crawler The algorithm of the 
typical crawler is given below: 
 
Step 1. Read a URL from the set of seed URLs. 
 
Step 2. Determine the IP address for the host name. 
 
Step 3. Download the Robot.txt file which carries 
downloading permissions and also specifies the files 
to be excluded by the crawler. 
 
Step 4. Determine the protocol of underlying host 
like http, ftp, gopher etc. 
 
Step 5. Based on the protocol of the host, download 
the document. 
 

Step 6. Identify the document format like doc, html, 
or pdf etc. 
 
Step 7. Check whether the document has already 
been downloaded or not. 
 
Step 8. If the document is fresh one Then Read it 
and extract the links or references to the other cites 
from that documents.          

 
Else    Continue; 

Step 9. Convert the URL links into their absolute IP 
equivalents. 
 
Step 10. Add the URLs to set of seed URLs. 
Web crawling is a very time-consuming task - some 
search engines show off that their crawlers 
completely recheck their searched pages at least once 
a month. This isn't very useful if you're expecting to 
find current information via that crawler. The 
problem is one of sheer volume - search engines have 
to go through billions of pages of information and 
this takes a huge amount of time.  
 
Types of Web Crawler 
Focused Crawler 

The rapid growth of the worldwide web 
poses unprecedented scaling challenges for general-
purpose crawlers and search engines leading to a new 
hypertext resource discovery system called a Focused 
Crawler [5]. A focused crawler may be described as 
a crawler, which returns relevant web pages on a 
given topic in traversing the web. It takes as input 
one or several related web pages and attempts to find 
similar pages on the web, typically by recursively 
following links in a best first manner. Ideally, the 
focused crawler should retrieve all similar pages 
while retrieving the fewest possible number of 
irrelevant documents. The goal of a focused crawler 
is to selectively seek out pages that are relevant to a 
pre-defined set of topics. The topics are specified not 
using keywords, but using exemplary documents. 
Rather than collecting and indexing all accessible 
web documents to be able to answer all possible ad-
hoc queries, a focused crawler analyzes its crawl 
boundary to find the links that are likely to be most 
relevant for the crawl, and avoids irrelevant regions 
of the web. This leads to significant savings in 
hardware and network resources, and helps keep the 
crawl more up-to-date. 

A focused crawler has the following main 
components: (a) A way to determine if a particular 
web page is relevant to the given topic, and (b) a way 
to determine how to proceed from a known set of 
pages. An early search engine which deployed the 
focused crawling strategy was proposed in based on 



[Hans, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1545-1551] 

 

the intuition that relevant pages often contain relevant 
links. It searches deeper when relevant pages are 
found, and stops searching at pages not as relevant to 
the topic.  

Unfortunately, the above crawlers show an 
important drawback when the pages about a topic are 
not directly connected in which case the crawling 
might stop pre-maturely. This problem is tackled in 
where reinforcement learning permits credit 
assignment during the search process, and hence, 
allowing off-topic pages to be included in the search 
path. 
 

 
Following is the process block diagram for a simple 

crawler 
 

However, this approach requires a large 
number of training examples, and the method can 
only be trained offline. In a set of classifiers are 
trained on examples to estimate the distance of the 
current page from the closest on-topic page. But the 
training procedure is quite complex. There are a 
number of issues related to existing focused crawlers, 
in particular the ability to ``tunnel'' through lowly 
ranked pages in the search path to highly ranked 
pages related to a topic which might re-occur further 
down the search path. Two parameters, viz., degree 
of relatedness, and depth describe a simple focused 
crawler. Both provide an opportunity for the crawler 
to ``tunnel'' through lowly ranked pages. A Focused 
Crawler seeks, acquires, indexes, and maintains 
pages on a specific set of topics that represent a 
relatively narrow segment of the web. 
Architecture of Focused Crawler  

The system architecture model adopted is 
distributed and object-oriented, which is a multi-tier 
implementation approach. The focused crawler 
system is composed of three tiers following the MVC 
(Model / View / Controller) paradigm. 

The system is based on 3-tier architecture: 
the first tier is the presentation layer (User Interface), 
the second (the middle) tier is composed of the 
request manager and the crawlers’ structure, the third 
tier is the data-storage layer (Web pages collection 
system, cache module). 

In the First tier the user interface is a HTML 
page, through which the user can launch the focused 
search based on keywords, a classifier, a bookmark 
file (file containing the URL to be used for the 

training of the classifier or as initial seed). In the 
second tier it gets as input the query string data 
receives a XML request message that contains a list 
of URLs identifying documents that need to be 
acquired and processed at higher layers.  

The message specifies also the ID of the 
agent crawler who is sending the request. In output it 
returns the requested document in XML format to the 
agent who sent the request. In the third tier a set of 
links provided by the second tier are stored in the 
cache module. 
Incremental Crawler 

An incremental crawler [6] is one, which 
updates an existing set of downloaded pages instead 
of restarting the crawl from scratch each time. This 
involves some way of determining whether a page 
has changed since the last time it was crawled.  
A crawler, which will continually crawl the entire 
web, based on some set of crawling cycles. An 
adaptive model is used, which uses data from 
previous cycles to decide which pages should be 
checked for updates, thus high freshness and results 
in low peak load is achieved. 
Architecture of Incremental Crawler 

Here we first identify two goals for the 
incremental crawler and explain how the incremental 
crawler conceptually operates. From this operational 
model, we will identify two key decisions that an 
incremental crawler constantly makes. Based on 
these observations, we propose architecture for the 
incremental crawler. 
Two goals for an incremental crawler 

The incremental crawler continuously 
crawls the web, revisiting pages periodically. During 
its continuous crawl, it may also purge some pages in 
the local collection, in order to make room for newly 
crawled pages. During this process, the crawler 
should have two goals: 

• Keep the local collection fresh: freshness of 
a collection can vary widely depending on 
the strategy used. Thus, the crawler should 
use the best policies to keep pages fresh. 
This includes adjusting the revisit frequency 
for a page based on its estimated change 
frequency. 

• Improve quality of the local collection: The 
crawler should increase the quality of the 
local collection by replacing less important 
pages with more important ones. This 
refinement process is necessary for two 
reasons; pages are constantly created and 
removed. Some of the new pages can be 
more important than existing pages in the 
collection, so the crawler should replace the 
old and less important pages with the new 



[Hans, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1545-1551] 

 

and more important pages. Second, the 
importance of existing pages changes over 
time. When some of the existing pages 
become less important than previously 
ignored pages, the crawler should replace 
the existing pages with the previously 
ignored pages.  

Operational model of an incremental crawler 
In this case the conceptual operation of the 

crawler is shown; it is not an efficient or complete 
implementation. All URL records the set of all URLs, 
and CollUrls records the set of URLs in the 
collection. We assume that the local Collection 
maintains affixed number of pages and that the 
collection is at its maximum capacity from the 
beginning.  

If the page already exists in the collection, 
the crawler updates its image in the collection. If not, 
the crawler discards an existing page from the 
collection saves the new page and updates CollUrls 
Finally, the crawler extracts links (or URLs) in the 
crawled page to add them to the list of all URLs. 
When the crawler decides to crawl a new page, it has 
to discard a page from the collection to make room 
for the new page. Therefore, when the crawler 
decides to crawl a new page, the crawler should 
decide what page to discard. We refer to this 
selection/discard decision as the refinement decision. 
This refinement decision should be based on the 
importance of pages.  

To measure importance, the crawler can use 
a number of metrics, including Page Rank and 
Authority. Clearly, the importance of the discarded 
page should be lower than the importance of the new 
page. In fact, the discarded page should have the 
lowest importance in the collection, to maintain the 
collection of the highest quality. Together with the 
refinement decision, the crawler decides on what 
page to update. 

That is, instead of visiting a new page, the 
crawler may decide to visit an existing page to 
refresh its image. To maintain the collection fresh, 
the crawler has to select the page that will increase 
the freshness most significantly, and we refer to this 
decision as update decision. 

To achieve the two goals for incremental 
crawlers, and to effectively implement the 
corresponding decision process, we propose the 
architecture for an incremental crawler. The 
architecture consists of three major modules 
(Ranking Module, Update Module and Crawl 
Module) and three data structures (Allures, CollUrls 
and Collection). The lines and arrows show data flow 
between modules, and the labels on the lines show 
the corresponding commands.  

Two data structures, AllUrls and CollUrls, 
maintain information similar to that. AllUrls records 
all URLs that the crawler has discovered, and 
CollUrls records the URLs that are/will be in the 
Collection. CollUrls is implemented as a priority-
queue, where the URLs to be crawled early are 
placed in the front. The URLs in CollUrls are chosen 
by the Ranking Module. The Ranking Module 
constantly scans through AllUrls and the Collection 
to make the refinement decision. For instance, if the 
crawler uses Page Rank as its importance metric, the 
Ranking Module constantly reevaluates the Page 
Ranks of all URLs, based on the link structure. When 
a page not in CollUrls turns out to be more important 
than a page within CollUrls, the Ranking Module 
schedules for replacement of the less-important page 
in CollUrls with that more-important page.  

The URL for this new page is placed on the 
top of CollUrls, so that the Update Module can crawl 
the page immediately. Also, the Ranking Module 
discards the less-important page from the Collection 
to make space for the new page. While the Ranking 
Module refines the Collection, the Update Module 
maintains the Collection fresh (update decision). It 
constantly extracts the top entry from CollUrls, 
requests the Crawl Module to crawl the page, and 
puts the crawled URL back into CollUrls.  

The position of the crawled URL within 
CollUrls is determined by the page's estimated 
change frequency and its importance. (The closer a 
URL is to the head of the queue, the more frequently 
it will be revisited.) To estimate how often a 
particular page changes, the Update Module records 
the checksum of the page from the last crawl and 
compares that checksum with the one from the 
current crawl. From this comparison, the Update 
Module can tell whether the page has changed or not. 
we explain how the Update Module can frequency of 
a page. Note that it is also possible to keep update 
statistics on larger units than a page, such as a web 
site or a directory. 

If web pages on a site change at similar 
frequencies, the crawler may trace how many times 
the pages on that site changed for last 6 months, and 
get a confidence interval based on the site-level 
statistics. In this case, the crawler may get a tighter 
confidence interval, because the frequency is 
estimated on larger number of pages (i.e., larger 
sample). 

However, if pages on a site change at highly 
different frequencies, this average change frequency 
may not be sufficient to determine how often to 
revisit pages in that site, leading to a less-than 
optimal revisit frequency. Also note that the Update 
Module may need to consult the\importance of a page 
in deciding on revisit frequency. If a certain page is 



[Hans, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1545-1551] 

 

highly important and the page needs to be always up-
to-date, the Update Module may revisit the page 
much more often than other pages with estimate the 
change frequency of a page based on this change 
history. In short, we propose two estimators, EP and 
EB, for the change The position of the crawled URL 
within CollUrls is determined by the page's estimated 
change frequency and its importance. (The closer a 
URL is to the head of the queue, the more frequently 
it will be revisited.) To estimate how often a 
particular page changes, the Update Module records 
the checksum of the page from the last crawl and 
compares that checksum with the one from the 
current crawl. From this comparison, the Update 
Module can tell whether the page has changed or not. 
we explain how the Update Module can estimate the 
change frequency of a page based on this change 
history. In short, we propose two estimators, EP and 
EB, for the change frequency of a page. Note that it is 
also possible to keep update statistics on larger units 
than a page, such as a web site or a directory. 

If web pages on a site change at similar 
frequencies, the crawler may trace how many times 
the pages on that site changed for last 6 months, and 
get a confidence interval based on the site-level 
statistics. In this case, the crawler may get a tighter 
confidence interval, because the frequency is 
estimated on larger number of pages (i.e., larger 
sample). 
 However, if pages on a site change 
at highly different frequencies, this average change 
frequency may not be sufficient to determine how 
often to revisit pages in that site, leading to a less-
than optimal revisit frequency. Also note that the 
Update Module may need to consult the\importance 
of a page in deciding on revisit frequency. If a certain 
page is highly important and the page needs to be 
always up-to-date, the Update Module may revisit the 
page much more often than other pages with similar 
change frequency. 

To implement this policy, the Update 
Module also needs to record the importance of each 
page returning to our architecture, the Crawl Module 
crawls a page and saves/updates the page in the 
Collection, based on the request from the Update 
Module. Also, the Crawl Module extracts all 
links/URLs in the crawled page and forwards the 
URLs to AllUrls.  

The forwarded URLs are included in 
AllUrls, if they are new. While we show only one 
instance of the Crawl Module in the Figure note that 
multiple Crawl Module's may run in parallel, 
depending on how fast we need to crawl pages. 
Separating the update decision (Update Module) 
from the refinement decision (Ranking Module) is 
crucial for performance reasons.  

However, it may take a while to 
select/deselect pages for Collection, because 
computing the importance of pages is often 
expensive. For instance, when the crawler computes 
Page Rank, it needs to scan through the Collection 
multiple times, even if the link structure has changed 
little. Clearly, the crawler cannot recompute the 
importance of pages for every page crawled, when it 
needs to run at 40 pages/second. By separating the 
refinement decision from the update decision, the 
Update Module can focus on updating pages at high 
speed, while the Ranking Module carefully refines 
the Collection. 
Hidden Web Crawler 

Current-day crawlers retrieve content from 
the publicly index able Web, i.e., the set of web 
pages reachable purely by following hypertext links, 
ignoring search forms and pages that require 
authorization or prior registration. In particular, they 
ignore the tremendous amount of high quality content 
\hidden" behind search forms, in large searchable 
electronic databases. Crawling the hidden Web is a 
very challenging problem for two fundamental 
reasons: (1) scale (a recent study [3] estimates the 
size of the hidden Web to be about 500 times the size 
of the publicly index able Web) and (10) the need for 
crawlers to handle search interfaces designed 
primarily for humans. 
 
Parallel Crawler 

A crawler is a program that downloads and 
stores Web pages, often for a Web search engine. 
Roughly, a crawler starts off by placing an initial set 
of URLs, in a queue, where all URLs to be retrieved 
are kept and prioritized. From this queue, the crawler 
gets a URL (in some order), downloads the page, 
extracts any URLs in the downloaded page, and puts 
the new URLs in the queue. This process is repeated 
until the crawler decides to stop. Collected pages are 
later used for other applications, such as a Web 
search engine or a Web cache.  
Architecture of General Parallel Crawler 

A parallel crawler consists of multiple 
crawling processes, which we refer to as C-proc's. 
Each C-proc performs the basic tasks that a single-
process crawler conducts. It downloads pages from 
the Web, stores the pages locally, extracts URLs 
from the downloaded pages and follows links. 
Depending on how the C-proc's split the download 
task, some of the extracted links may be sent to other 
C-proc's. The C-proc's performing these tasks may be 
distributed either on the same local network or at 
geographically distant locations.  

• Intra-site parallel crawler: When all C-
proc's run on the same local network and 



[Hans, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1545-1551] 

 

communicate through a high speed 
interconnect (such as LAN), we call it an 
intra-site parallel crawler. In Fig 3.1, this 
scenario corresponds to the case where all 
C-proc's run only on the local network on 
the top.  

In this case, all C-proc’s uses the same local network 
when they download pages from remote Web sites. 
Therefore, the network load from C-proc's is 
centralized at a single location where they operate.  

• Distributed crawler: When C-proc's run at 
geographically distant locations connected 
by the Internet (or a wide area network), we 
call it a distributed crawler. For example, 
one C-proc may run in the US, crawling all 
US pages, and another C-proc may run in 
France, crawling all European pages. A 
distributed crawler can disperse and even 
reduce the load on the overall network.  

When C-proc's run at distant locations and 
communicates through the Internet, it becomes 
important how often and how much C-proc's need 
to communicate. The bandwidth between C-proc's 
may be limited and sometimes unavailable, as is 
often the case with the Internet. 

 

General architecture of a parallel crawler 
 

When multiple C-proc's download pages in 
parallel, different C-proc's may download the same 
page multiple times. In order to avoid this overlap, C-
proc's need to coordinate with each other on what 
pages to download. 
 
Conclusion 

The hypertext documents are the most 
important component of WWW but their current 
structure poses a bottleneck for their retrieval by a 
crawler. By studying the different types of crawlers, a 
better retrieval technique can be suggested so as to 
improve the quality of the pages and the freshness of 
the pags.As the project matures, we are also 
interested to investigate the mechanisms to carefully 

select what page to download and store space in order 
to make the best use of its stored collection pages. 
 
References 

[1] A.K Sharma, J.P Gupta, 
D.P.Aggarwal,”PARACHYD: A Parallel 
Crawler based On Augmented Hyper text 
Documents”, communicated to IASTED 
International Journal of computer 
applications, May.2005. 

[2] Y.Yang, S.Slattery, and R.Ghani,” A study 
of approaches to hypertext categorization “, 
Journal of Intelligent Information 
Systems.Kluwer Academic Press, 2001. 

[3] S.Chakrabarti, M. van den berg, and 
B.Dom,”Distributed hypertext resources 
discovery through examples”, Proceedings 
of the 25th International Conferences on 
Very large Database (VLDB) pages 375-
386, 1999. 

[4] A.K.Sharma, Charu Bishnoi, Dimple 
Juneja,” A Multi-Agent Framework for agent 
based focused crawlers”, Proc .Of 
International Conference on Emerging 
Technologies in IT Industry, pp-48, ICET -
04, Punjab, India, November 2004. 

[5] Junghoo Cho and Hector Garcia-Molina. 
Estimating frequency of change, 
2000.Submitted to VLDB 2000, Research 
track 

[6] The Deep Web: Surfacing Hidden Value. 
http:/www.completeplanet.com/Tutorials/De
epWeb/ 


